Abstract
We study analytically the initial value problem for a charged massless scalar-field on a Reissner-Nordstr\"om spacetime. Using the technique of spectral decomposition we extend recent results on this problem. Following the no-hair theorem we reveal the dynamical physical mechanism by which the charged hair is radiated away. We show that the charged perturbations decay according to an inverse power-law behaviour at future timelike infinity and along future null infinity. Along the future outer horizon we find an oscillatory inverse power-law relaxation of the charged fields. We find that a charged black hole becomes ``bald'' slower than a neutral one, due to the existence of charged perturbations. Our results are also important to the study of mass-inflation and the stability of Cauchy horizons during a dynamical gravitational collapse of charged matter in which a charged black-hole is formed.

This publication has 0 references indexed in Scilit: