Crossed disynaptic inhibition of sacral motoneurones.

Abstract
1. Intracellular recording was made from motoneurones in lower sacral (S2 and S3) segments of the spinal cord in cats, to analyse the neuronal organization of the inhibition evoked in these motoneurones from contralateral afferents. 2. It was confirmed that stimulation of the lowest threshold afferents of contralateral dorsal roots evokes i.p.s.p.s with latencies similar to those of disynaptic i.p.s.p.s. evoked from group Ia muscle spindle afferents in limb motoneurones. 3. The crossed disynaptic i.p.s.p.s in sacral motoneurones were found to be mediated by interneurones which are themselves inhibited by Renshaw cells, these interneurones and Renshaw cells being activated from the dorsal and ventral roots respectively, on the side of the body opposite to the location of the inhibited motoneurones. 4. In unanaesthetized decerebrate preparations crossed recurrent facilitation of sacral motoneurones was evoked with a time course similar to that of recurrent facilitation of lumbar motoneurones. It was taken to indicate a tonic inhibition of sacral motoneurones by interneurones responsible for their crossed disynaptic inhibition, and a disinhibition following stimulation of contralateral ventral roots. 5. In anaesthetized preparations crossed recurrent inhibition appeared, instead of the recurrent facilitation, in more than one half of the tested motoneurones. 6. A comparison of the input from ipsilateral and contralateral afferents to identified motoneurones of tail muscles with the input to pudendal motoneurones led to the conclusion that crossed disynaptic inhibition is evoked specifically in tail motoneurones. 7. Intracellular staining of sacral motoneurones with horseradish peroxidase revealed that the tail motoneurones and others with crossed disynaptic inhibition differ from the pudendal motoneurones in their location and in a number of morphological features; tail motoneurones are larger, they have differently directed dendrites and they show more extensively branched initial axon collaterals which appeared to ramify only within the ventral and lateral parts of the ipsilateral ventral horn. 8. One Renshaw cell which was stained with horseradish peroxidase was found to project contralaterally, after giving a number of axon collaterals ipsilaterally.