nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs

Abstract
A program to numerically simulate quantum transport in double gate metal oxide semiconductor field effect transistors (MOSFETs) is described. The program uses a Green's function approach and a simple treatment of scattering based on the idea of so-called Buttiker probes. The double gate device geometry permits an efficient mode space approach that dramatically lowers the computational burden and permits use as a design tool. Also implemented for comparison are a ballistic solution of the Boltzmann transport equation and the drift-diffusion approaches. The program is described and some examples of the use of nanoMOS for 10 nm double gate MOSFETs are presented.