Optimal Sampling Schedule Design for Populations of Patients
Open Access
- 1 September 2003
- journal article
- clinical trial
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 47 (9) , 2888-2891
- https://doi.org/10.1128/aac.47.9.2888-2891.2003
Abstract
Generation of pharmacodynamic relationships in the clinical arena requires estimation of pharmacokinetic parameter values for individual patients. When the target population is severely ill, the ability to obtain traditional intensive blood sampling schedules is curtailed. Population modeling guided by optimal sampling theory has provided robust estimates of individual patient pharmacokinetic parameter values. Because of the wide range of parameter values seen in this circumstance, it is important to know how the range of parameter values in the population affects the timing of the optimal samples. We describe a new, simple technique to obtain optimal samples for a population of patients. This technique uses the nonparametric distribution associated with a nonparametric adaptive grid population pharmacokinetic analysis. We used the distribution from an analysis of 58 patients receiving levofloxacin for nosocomial pneumonia at a dose of 750 mg. The collection of parameter vectors and their associated probabilities were entered into a D-optimal design evaluation by using ADAPT II. The sampling times, weighted for their probabilities, were displayed in a frequency histogram (an expression of how system information varies with time for the population). Such an explicit expression of the time distribution of information allows rational sampling design that is robust not only for the population mean vector, as in traditional D-optimal design theory, but also for large portions of the total population. For levofloxacin, one reasonable six-sample design would be 1.5, 2, 2.25, 4, 4.75, and 24 h after starting a 90-min infusion. Such sampling designs allow informative population pharmacokinetic analysis with precise and unbiased estimates after the maximal a posteriori probability Bayesian step. This allows the highest probability of delineating a pharmacodynamic relationship.Keywords
This publication has 13 references indexed in Scilit:
- Levofloxacin Population Pharmacokinetics and Creation of a Demographic Model for Prediction of Individual Drug Clearance in Patients with Serious Community-Acquired InfectionAntimicrobial Agents and Chemotherapy, 1998
- Rapid stereospecific high-performance liquid chromatographic determination of levofloxacin in human plasma and urineJournal of Pharmaceutical and Biomedical Analysis, 1997
- Comparison of ED, EID, and API criteria for the robust optimization of sampling times in pharmacokinetics.Journal of Pharmacokinetics and Biopharmaceutics, 1997
- Implementation of OSPOP, an algorithm for the estimation of optimal sampling times in pharmacokinetics by the ED, EID and API criteriaComputer Methods and Programs in Biomedicine, 1996
- Optimal Sampling Theory and Population Modelling: Application to Determination of the Influence of the Microgravity Environment on Drug Distribution and EliminationThe Journal of Clinical Pharmacology, 1991
- Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experimentsMathematical Biosciences, 1990
- A prospective evaluation of optimal sampling theory in the determination of the steady-state pharmacokinetics of piperacillin in febrile neutropenic cancer patientsClinical Pharmacology & Therapeutics, 1989
- An evaluation of optimal sampling strategy and adaptive study designClinical Pharmacology & Therapeutics, 1988
- Population Pharmacokinetics of Procainamide from Routine Clinical DataClinical Pharmacokinetics, 1984
- Estimating population kinetics.1982