The fractal structure and the dynamics of aggregation of synthetic melanin in low pH aqueous solutions

Abstract
We have used static and dynamic light scattering to study the dynamics of aggregation of synthetic melanin, an amorphous biopolymeric substance, in low pH aqueous solution. We have found that, depending on the final pH value of the solutions, there existed two regimes of the aggregation kinetics, one corresponding to diffusion limited aggregation (DLA), and the other corresponding to reaction limited aggregation (RLA). The precipitates formed in these two regimes can be characterized by fractal structures. We have found fractal dimensions of df =1.8 for the DLA clusters and df =2.2 for the RLA clusters. These results agree well with the proposed limits of the fractal dimensions of the gold aggregates formed in aqueous solutions by Weitz et al.