A Stress Tensor for Anti-de Sitter Gravity

  • 17 February 1999
Abstract
We propose a procedure for computing the boundary stress tensor associated with a gravitating system in asymptotically anti-de Sitter space. Our definition is free of ambiguities encountered by previous attempts, and correctly reproduces the masses and angular momenta of various spacetimes. Via the AdS/CFT correspondence, our classical result is interpretable as the expectation value of the stress tensor in a quantum conformal field theory. We demonstrate that the conformal anomalies in two and four dimensions are recovered. The two dimensional stress tensor transforms with a Schwarzian derivative and the expected central charge. We also find a nonzero ground state energy for global AdS_5, and show that it exactly matches the Casimir energy of the dual N=4 super Yang-Mills theory on S^3 x R.

This publication has 0 references indexed in Scilit: