Laser-Reflectance Interferometry Measurements of Diamond-Film Growth
- 1 May 1995
- journal article
- Published by Springer Nature in MRS Bulletin
- Vol. 20 (5) , 29-31
- https://doi.org/10.1557/s0883769400044869
Abstract
The remarkable properties of diamond, including its hardness, chemical inertness, high thermal conductivity, low coefficient of friction, optical transparency, and semiconducting properties, have led to considerable research in the area of diamond thin-film deposition. Diamond films have been characterized ex situ by a large number of diagnostic techniques including Raman spectroscopy, x-ray diffraction, SEM, and TEM. In situ diagnostics, which can provide information in real time as the film is growing, are less common.Laser-reflectance interferometry (LRI) has been used to monitor the growth of diamond films in situ. The technique involves measuring the intensity of a laser beam reflected from the substrate surface on which the film is growing. The reflected beam is the sum of beams reflected by the gas-diamond interface and the diamond-silicon interface. Oscillations in the reflectivity are observed as the film grows because of interference between the reflected beams. Each oscillation indicates an increase in film thickness of λ/2n, where λ is the laser wavelength and n is the index of refraction of the film. If the index of refraction of the film is known, the thickness and growth rate can be determined in situ. For LRI measurements with 632.8-nm-wavelength HeNe lasers, the index of refraction of diamond films has been found to be within 10% of the bulk diamond value of 2.4. Each oscillation therefore indicates an increase in film thickness of 0.13 μm.The reflectivity measured by LRI is also affected by scattering because of surface roughness.Keywords
This publication has 12 references indexed in Scilit:
- Raman and X-ray studies of polycrystalline CVD diamond filmsDiamond and Related Materials, 1994
- Investigation of the growth kinetics of low pressure diamond films by in situ elastic scattering of light and reflectivityApplied Physics Letters, 1993
- Elastic scattering of light and reflectivity development during low pressure diamond film growthDiamond and Related Materials, 1993
- Chemical vapour deposition and characterization of smooth {100}-faceted diamond filmsDiamond and Related Materials, 1993
- In-situ investigation of low-pressure diamond growth by elastic scattering of light and reflectance spectroscopyDiamond and Related Materials, 1992
- In situ growth rate measurement and nucleation enhancement for microwave plasma CVD of diamondJournal of Materials Research, 1992
- Growth and characterization of diamond films on nondiamond substrates for electronic applicationsProceedings of the IEEE, 1991
- Effects of noble gases on diamond deposition from methane-hydrogen microwave plasmasJournal of Applied Physics, 1990
- Current Issues and Problems in the Chemical Vapor Deposition of DiamondScience, 1990
- Characterization of diamond films by Raman spectroscopyJournal of Materials Research, 1989