Interaction between gibberellin A4/7 and root-pruning on the reproductive and vegetative processes in Douglas-fir. III. Effects on anatomy of shoot elongation and terminal bud development

Abstract
The relative importance of cell division and cell elongation to shoot elongation and the anatomical changes in vegetative terminal apices were assessed for 9- and 10-year-old seedlings of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) in response to two effective cone-induction treatments, gibberellin A4/7 (GA4/7) and root-pruning (RP). Root-pruning was done in mid-April at the start of vegetative bud swelling and GA treatments were begun at vegetative bud flushing in mid-May and continued until early July. Shoot elongation before flushing resulted primarily from cell divisions and was not affected by the RP treatment. Shoot elongation after flushing resulted primarily from cell expansion which was reduced by RP treatments. Root-pruning significantly slowed mitotic activity, apical growth, and development of vegetative terminal buds from mid-June through mid-July. Apical growth then resumed during leaf initiation and the final number of leaf primordia initiated was not affected. This resulted in a delay of 2 to 4 weeks in the transition from bud-scale to leaf initiation. Retarded terminal vegetative apices anatomically resembled latent axillary apices but were never completely inhibited. GA + RP had the same effect as RP. GA4/7 alone had no effect on shoot or apical development. These results show that RP and GA + RP significantly retard shoot elongation and terminal bud development but still allow normal development of vegetative terminal buds. Retardation of bud development by a few weeks shifts the critical morphogenetic phase of transition from bud scale to leaf initiation to a later time when endogenous and environmental conditions may differ from the normal.

This publication has 14 references indexed in Scilit: