Biological Pattern Formation on Two-Dimensional Spatial Domains: A Nonlinear Bifurcation Analysis

Abstract
A tissue interaction model for skin organ pattern formation is presented. Possible spatially patterned solutions on rectangular domains are investigated. Linear stability analysis suggests that the model can exhibit pattern formation. A weakly nonlinear two-dimensional perturbation analysis is then carried out. This demonstrates that when bifurcation occurs via a simple eigenvalue, patterns such as rolls, squares, and rhombi can be supported by the model equations. Our nonlinear analysis shows that more complex patterns are also possible if bifurcation occurs via a double eigenvalue. Surprisingly, hexagonal patterns could not develop from a primary bifurcation