Abstract
Diltiazem was able to decrease the oxygen consumption rate and lactate production in synaptosomes isolated from rat forebrains, both under control and depolarized (40 .mu.M veratridine) conditions, starting from a concentration of 250 .mu.M. This effect was particularly evident when synaptosomes were depolarized by veratridine. This depolarization-counteracting action was evident also when transplasma membrane K+ diffusion potentials were measured after depolarization induced by veratridine and by rotenone with a glucose shortage. The concentrations of ATP, phosphocreatine, and creatine were less sensitive to diltiazem action. The concentration/response relationships were the same as those found for the oxygen consumption rate, lactate production, and K+ diffusion potentials. The effect of 0.5 mM diltiazem in counteracting inhibition of energy metabolism induced by rotenone without glucose were no longer detectable when either Ca2+ or Na+ was absent from the incubation medium of synaptosomes. Diltiazem at the same concentrations (starting from 250 .mu.M) was able to inhibit both the veratridine-induced and the rotenone-without-glucose-induced increase in intrasynaptosomal free Ca2+ levels evaluated with the fluorescent probe quin2. The results are discussed in view of a possible effect of diltiazem on voltage-dependent Na+ channels and the possibility of utilizing this approach for counteracting neuronal failure due to derangement of energy metabolism or hyperexcitation.