Discrete Spectra of Charged Black Holes

Abstract
Bekenstein proposed that the spectrum of horizon area of quantized black holes must be discrete and uniformly spaced. We examine this proposal in the context of spherically symmetric charged black holes in a general class of gravity theories. By imposing suitable boundary conditions on the reduced phase space of the theory to incorporate the thermodynamic properties of these black holes and then performing a simplifying canonical transformation, we are able to quantize the system exactly. The resulting spectra of horizon area, as well as that of charge are indeed discrete. Within this quantization scheme, near-extremal black holes (of any mass) turn out to be highly quantum objects, whereas extremal black holes do not appear in the spectrum, a result that is consistent with the postulated third law of black hole thermodynamics.
All Related Versions

This publication has 0 references indexed in Scilit: