A unifying framework for concept-learning algorithms

Abstract
A unifying framework for concept-learning, derived from Mitchell's Generalization as Search-paradigm, is presented. Central to the framework is the generic algorithm Gencol. Gencol forms a synthesis of existing concept-learning algorithms as it identifies the key issues in concept-learning: the representation of concepts and examples, the search strategy and heuristics, and the operators that transform one concept-description into another one when searching the concept description space. Gencol is relevant for practical purposes as it offers a solid basis for the design and implementation of concept-learning algorithms. The presented framework is quite general as seemingly disparate algorithms such as TDIDT, AQ, MIS and version spaces fit into Gencol.

This publication has 21 references indexed in Scilit: