Abstract
Despite its widespread use in science, the Neyman-Pearson Theory of Statistics (NPT) has been rejected as inadequate by most philosophers of induction and statistics. They base their rejection largely upon what the author refers to as after-trial criticisms of NPT. Such criticisms attempt to show that NPT fails to provide an adequate analysis of specific inferences after the trial is made, and the data is known. In this paper, the key types of after-trial criticisms are considered and it is argued that each fails to demonstrate the inadequacy of NPT because each is based on judging NPT on the grounds of a criterion that is fundamentally alien to NPT. As such, each may be seen to either misconstrue the aims of NPT, or to beg the question against it.

This publication has 0 references indexed in Scilit: