Infrared, surface-assisted laser desorption ionization mass spectrometry on frozen aqueous solutions of proteins and peptides using suspensions of organic solids

Abstract
Surface-assisted, laser desorption ionization (SALDI) time-of-flight mass spectra of proteins and peptides have been obtained from bulk frozen aqueous solutions by adding solid organic powders to the solutions before freezing. Abundant analyte ions were obtained with a 3.28 µm Nd:YAG/OPO laser. 20 compounds were evaluated as solid additives, and 16 yielded protein mass spectra. Successful solids included compounds like pyrene, aspartic acid, and polystyrene. The best results were obtained with nicotinic acid and indole-2-carboxylic acid, which yielded protein mass spectra anywhere on the sample and with every laser shot. Compared with ultraviolet-matrix-assisted laser desorption ionization on the same instrument, cryo-IR-SALDI had a comparable detection limit (≈1 µM), a lower mass resolution for peptides, and a higher mass resolution for large proteins. Approximately 2500 cryo-IR-SALDI mass spectra were obtained from a single spot on a 0.3-mm-thick frozen sample before the metal surface was reached. About 0.1 nL of frozen solution was desorbed per laser shot. The extent of protein charging varied between the SALDI solids used. With thymine, myoglobin charge states up to MH 12 +12 were observed. It is tentatively concluded that observed ions are preformed in the frozen sample.