Abstract
In a previous paper [1] Chang and the present author presented a system of infinite valued predicate logic, the truth values being the closed interval [0, 1] of real numbers. That paper was the result of an investigation attempting to establish the completeness of the system using the real number 1 as the sole designated value. In fact, we fell short of our mark and proved a weakened form of completeness utilizing positive segments, [0, a], of linearly ordered abelian groups as admissible truth values. A result of Scarpellini [8], however, showing that the set of well-formed formulas of infinite valued logic valid (with respect to the sole designated real number 1) is not recursively enumerable indicates the above mentioned result is the best possible.

This publication has 8 references indexed in Scilit: