Effects of Temperature on Morphology and Properties of Films Prepared from Poly(ester‐urethane) and Nitrochitosan
- 23 January 2006
- journal article
- research article
- Published by Wiley in Macromolecular Materials and Engineering
- Vol. 291 (2) , 148-154
- https://doi.org/10.1002/mame.200500310
Abstract
Summary: Novel elastic materials were prepared by mixing semicrystalline polyester‐based polyurethane (PU) synthesized at 100 °C with nitrochitosan (NCH) and 1,1,1‐tris(hydroxylmethyl)propane as crosslinker, and then by curing the mixture at 18, 25, 40, 60, and 80 °C. The effects of cure temperature on the crystallization behavior, miscibility, and mechanical properties of the PUNCH materials were studied by attenuated total reflection Fourier transform IR, wide‐angle X‐ray diffraction, scanning electron microscopy, dynamic mechanical analysis, X‐ray photoelectron spectroscopy, and tensile test. The results indicated that the crystalline structure of the blend films was more easily interrupted as the cure temperature increased, leading to a decrease of the degree of crystallinity. With an increase of cure temperature, the blend films exhibited high crosslinking density and tensile strength, and the phase separation between hard and soft segments of PU enhanced, resulting in a decrease in the glass transition temperature (Tg) of soft segment. Interestingly, the composite films keeping high elongation at break possessed tensile strength higher than that of the native poly(ester‐urethane). The enhanced mechanical properties of the blend films can be attributed to the relatively dense crosslinking network and strong intermolecular hydrogen bonding between NCH and PU. Therefore, this study not only provided a novel way by adding NCH into PU matrix to prepare elastic materials, which would remain functional characteristic of chitosan, but also expanded the application field of chitosan. The cure temperature dependence of the tensile strength and elongation at break for the PEPU‐100 and PUNCH‐100 films. image The cure temperature dependence of the tensile strength and elongation at break for the PEPU‐100 and PUNCH‐100 films.Keywords
This publication has 32 references indexed in Scilit:
- Biodegradation of polyurethane: a reviewPublished by Elsevier ,2002
- Thermal and Phase Behavior of Polyurethane Based on Chain Extender, 2,2-Bis-[4-(2-hydroxyethoxy)phenyl]propanePolymer Journal, 1999
- New chitin-based polymer hybrids, 3. Miscibility of chitin-graft-poly(2-ethyl-2-oxazoline) with poly(vinyl alcohol)Macromolecular Chemistry and Physics, 1998
- Microstructural Examination of Semi-Interpenetrating Networks of Poly(N,N-dimethylacrylamide) with Cellulose or Chitin Synthesized in Lithium Chloride/N,N-DimethylacetamideMacromolecules, 1998
- Waterborne two-pack isocyanate-free systems for industrial coatingsProgress in Organic Coatings, 1998
- Emulsifiers with high chemical resistance: a key to high performance waterborne coatingsProgress in Organic Coatings, 1998
- Pervaporation characteristics of a benzoylchitosan membrane for benzene-cyclohexane mixturesMacromolecular Chemistry and Physics, 1998
- The Vibrational Spectroscopy of PolymersPublished by Cambridge University Press (CUP) ,1989
- Interpenetrating Polymer Networks and Related MaterialsPublished by Springer Nature ,1981
- Fourier‐transform infrared studies of polymer blends. II. Poly(ϵ‐caprolactone)–poly(vinyl chloride) systemJournal of Polymer Science: Polymer Physics Edition, 1979