Neural coding in the chick cochlear nucleus
- 1 March 1990
- journal article
- research article
- Published by Springer Nature in Journal of Comparative Physiology A
- Vol. 166 (5) , 721-734
- https://doi.org/10.1007/bf00240021
Abstract
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus — nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as ‘choppers’, while units with CF's below 1000 Hz are ‘primary-like’. Several ‘onset’ units are also seen in NA. In contrast, all NM units show ‘primary-like’ response. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984).This publication has 28 references indexed in Scilit:
- Neural response to very low-frequency sound in the avian cochlear nucleusJournal of Comparative Physiology A, 1989
- Axonal delay lines for time measurement in the owl's brainstem.Proceedings of the National Academy of Sciences, 1988
- Neural map of interaural phase difference in the owl's brainstem.Proceedings of the National Academy of Sciences, 1986
- Development of absolute thresholds in chickensThe Journal of the Acoustical Society of America, 1985
- Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response propertiesJournal of Neurophysiology, 1985
- Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized catsJournal of Neurophysiology, 1976
- Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of N. magnocellularis and N. laminarisJournal of Comparative Neurology, 1975
- Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulationExperimental Brain Research, 1966
- The Role of Auditory Feedback in the Control of Vocalization in the White-Crowned Sparrow1Zeitschrift Fur Tierpsychologie, 1965
- A place theory of sound localization.Journal of Comparative and Physiological Psychology, 1948