Abstract
In this paper, we briefly discuss several ways to determine the work of adhesion and the requirements for achieving maximum adhesion and spontaneous spreading. Specifically, we will concentrate on the methodology developed by van Oss. Chaudhury and Good [5–7] for the determination of the work of adhesion and interfacial tension. Recently, Good [4] has redefined the surface interaction components γ+ and γ as hydrogen bond acidic and basic parameters. We have related the surface−hydrogen−bond components γ+ and γ to the Taft and Kamlet's [28, 29] linear solvation energy relationship (LSER) solvatochromic α and β parameters. We [8, 9] have found that, for water at ambient temperature, α [hydrogen-bond-donating (HBD) ability] and β [hydrogen-bond-accepting (HBA) ability] are not equal, and the ratio for the normalized α and β is 1.8. This new ratio is assumed to be equal to that of γ+ & γ for water at 20°C. On the basis of the new ratio, we will present our recalculated surface-hydrogen-bond components for several polymers and biomaterials. This change in the ratio did not affect the total surface tension or the sign of the interfacial tension. The net improvement is in the lowering of the γ values. These data may be useful for predicting the adhesion between an adhesive and an adherend.