The major surface protein of Leishmania promastigotes is anchored in the membrane by a myristic acid-labeled phospholipid.

Abstract
Promastigotes of the protozoan parasite Leishmania major were biosynthetically labeled with myristic acid. Solubilization and phase separation in the non‐ionic detergent Triton X‐114 shows that the label is not incorporated into soluble hydrophilic proteins, but is incorporated into a few insoluble proteins. The bulk of the incorporated fatty acid is associated with a heterogeneous phosphorylated glycolipid and a few amphiphilic integral membrane proteins. Among these, the major surface protein of Leishmania promastigotes, p63, is predominantly labeled. Upon digestion with Bacillus cereus phospholipase C, amphiphilic p63 is shown to lose its myristic acid label and to acquire concomitantly the characteristic electrophoretic mobility and solubility behavior of hydrophilic p63. These data show that the amphiphilic character of the major surface protein of Leishmania promastigotes is due to a covalently attached phospholipid. We propose that this phospholipid provides the sole hydrophobic moiety anchoring the protein to the pellicular membrane of the protozoan parasite.