Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Preprint
- 7 July 2003
Abstract
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: