Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C

Abstract
The role of reduced muscle pH in the development of skeletal muscle fatigue is unclear. This study investigated the effects of lowering skeletal muscle intracellular pH by exposure to 30% CO2 on the number of isometric tetani needed to induce significant fatigue. Isolated single mouse muscle fibers were stimulated repetitively at intervals of 4–2.5 s by using 80-Hz, 400-ms tetani at 28°C in Tyrode solution bubbled with either 5 or 30% CO2. Stimulation continued until tetanic force had fallen to 40% of the initial value. Exposure to 30% CO2 caused a significant fall in intracellular pH of ∼0.3 pH unit but did not cause any significant changes in initial peak tetanic force. During the course of repetitive stimulation, intracellular pH fell by ∼0.3 pH unit in both normal and acidified fibers. The number of tetani needed to reduce force to 40% of the initial value was not significantly different in 5 and 30% CO2Tyrode. The sole effect of acidosis was to reduce the rate of relaxation of force, especially in fatigued fibers. It is concluded that, at 28°C, acidosis per se does not accelerate the development of fatigue during repeated tetanic stimulation of isolated mouse skeletal muscle fibers.

This publication has 35 references indexed in Scilit: