Onset of Mechanical Separation in Bellows-Supported Rotary Face Seals

Abstract
The problem of incipient dynamic mechanical separation in bellows-supported rotary face seals is analyzed assuming the bellows to be represented by a series of distributed springs and dampers supporting a rigid seal carrier. An expression is developed for the distribution of contact forces between the seal and mating rings generated by the coupled effects of shaft pulsation and mating-ring wobble. This expression is used to determine the operating conditions which will produce the onset of separation by applying the criterion that the contact force distribution will go to zero at some point on the seal when separation is imminent. Results are presented in the form of equations and graphs which define the minimum initial compression necessary to maintain continuous contact in terms of system resilience and damping, amplitude of mating-ring wobble and shaft pulsation, and operating frequency.

This publication has 0 references indexed in Scilit: