If gamma ray bursts are highly collimated, the energy requirements of each event may be reduced by several (~ 4-6) orders of magnitude, and the event rate increased correspondingly. Extreme conditions in gamma ray bursters lead to highly relativistic motions (bulk Lorentz factors Gamma > 100). This results in strong forward beaming of the emitted radiation in the observer's rest frame. Thus, all information on gamma ray bursts comes from those ejecta emitted in a narrow cone (opening angle 1/Gamma) pointing towards the observer. We are at present ignorant of whether there are ejecta outside that cone or not. The recent detection of longer wavelength transients following gamma ray bursts allows an empirical test of whether gamma ray bursts are collimated jets or spherical fireballs. The bulk Lorentz factor of the burst ejecta will decrease with time after the event, as the ejecta sweep up the surrounding medium. Thus, radiation from the ejecta is beamed into an ever increasing solid angle as the burst remnant evolves. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. Nondetection of such transients in published supernova searches can already rule out the most extreme models of gamma ray beaming.