The recent evolutionary origin of the phenylalanine-sensitive isozyme of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in the enteric lineage of bacteria

Abstract
Evolutionary events that generated the three regulatory isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase present in contemporary strains ofEscherichia coli have been proposed recently [Ahmad et al. (1986) J Bacteriol 165:146–154]. The phylogenetic subdivision of gram-negative prokaryotes studied (Superfamily B) includes enteric bacteria, anOceanospirillum cluster, pseudomonad Group I (e.g.,Pseudomonas aeruginosa), pseudomonad Group V (e.g.,Xanthomonas), and theAcinetobacter grouping. DAHP synthase-phe, a regulatory isozyme subject to allosteric control byl-phenylalanine, was the last member of the isozyme family to evolve. Thus, DAHP synthase-phe is absent throughout Superfamily B except within the enteric lineage. Bacteria that make up the enteric lineage (Escherichia, Klebsiella, Erwinia, Serratia, Proteus, Aeromonas, andAlteromonas) were examined in detail; DAHP synthasephe was present in each of these organisms. Therefore, the isozyme originated between the separation of the enteric andOceanospirillum lineages, prior to the divergence ofAlteromonas putrefaciens (44% homology withE. coli by DNA:rRNA hybridization) from the rest of the enteric lineage. DAHP synthase-tyr and DAHP synthase-trp were uniformly present within the enteric lineage, although it was often necessary to derepress DAHP synthase-trp by physiological manipulation in order to demonstrate its presence.