Role of the β‐amyloid protein in Alzheimer's disease

Abstract
A major histopathological hallmark of Alzheimer's disease (AD) is the presence of amyloid deposits in the parenchyma of the amygdala, hippocampus, and neocortex. The principal component of amyloid is the beta-amyloid protein (A beta), a 39-43 amino acid peptide composed of a portion of the transmembrane domain and the extracellular domain of the amyloid precursor protein (APP). APP occurs as several A beta-containing isoforms of 695, 751, and 770 amino acids, with the latter two APP containing a domain that shares structural and functional homologies with Kunitz serine protease inhibitors. In cultured cells, APP mature through the constitutive secretory pathway, and some cell surface-bound APP are cleaved by an enzyme, designated as alpha-secretase, within the A beta domain, an event that precludes A beta amyloidogenesis. Several studies have delineated two additional pathways of APP processing: first, an endosomal/lysosomal pathway generates a complex set of APP-related membrane-bound fragments, some of ...

This publication has 0 references indexed in Scilit: