Laminar Free Convection From a Downward-Projecting Fin

Abstract
A theoretical analysis of conduction through and free convection from a tapered, downward-projecting fin immersed in an isothermal quiescent fluid is presented. The problem is solved by assuming quasi-one-dimensional heat conduction in the fin and matching the solution to that of the convection system, which is treated as a boundary layer problem. For an infinite Prandtl number, solutions are derived which take the form of a power law temperature distribution along the fin. The effect of this power (n) on heat transfer, drag, and the corresponding boundary layer profiles is discussed. It is shown that n is independent of the fin profile and dependent on a single nondimensional group χ. The theoretical results for infinite Prandtl number are compared with corresponding results derived from previous work using a Prandtl number of unity. The effect of Prandtl number on the determination of n and consequently the fin effectiveness is found to be extremely small. The results of an experimental program are also presented. These consist of temperature profiles and the n — χ relation for different fin geometries and surrounding fluids. Comparison with the theoretical predictions reveals good agreement.

This publication has 0 references indexed in Scilit: