Inhibition of human antibody-dependent cellular cytotoxicity, cell-mediated cytotoxicity, and natural killing by a xenogeneic antiserum prepared against "activated" alloimmune human lymphocytes.
Open Access
- 1 March 1982
- journal article
- research article
- Published by Oxford University Press (OUP) in The Journal of Immunology
- Vol. 128 (3) , 1246-1251
- https://doi.org/10.4049/jimmunol.128.3.1246
Abstract
Xenogeneic antiserum (RH1) was prepared in Lewis rats by hyperimmunization with concanavalin A- (Con A) activated alloimmune human lymphocytes. The antiserum RH1 effectively inhibited human antibody-dependent cellular cytotoxicity (ADCC), cell-mediated cytotoxicity (CMC), and natural killing (NK) in the absence of complement (C). Inhibition by RH1 was dependent on the dilution of antiserum employed and the number of cytotoxic lymphocytes present during cytolysis. Pretreatment of lymphocytes with RH1 or the presence of RH1 in culture did not inhibit lymphocyte proliferation stimulated by Con A, phytohemagglutinin, or allogeneic cells; lymphokine production as measured by leukocyte-inhibiting factor production; antibody-dependent C lysis; or CMC mediated by murine cytotoxic T lymphocytes. Analysis of the mechanism of inhibition of cytotoxicity by RH1 revealed that 1) RH1 was not cytotoxic for human lymphocytes at 37 degrees C in the absence of C; 2) purified F(ab')2 fragments were equally inhibitory as whole serum; 3) pretreatment of lymphocytes with RH1 effectively inhibited their capacity to mediate ADCC, CMC, or NK, and this effect was reversible by culturing the cells overnight at 37 degrees C; 4) RH1 did not inhibit target cell binding by K cells, effector cells of ADCC, or alloimmune T cells, but did inhibit binding by NK cells; and finally, 5) the addition of RH1 to preformed lymphocyte-target conjugates in a single cell cytotoxicity assay inhibited killing of the bound target cells in all three systems without disrupting the conjugates. Collectively, these findings suggest that RH1 antiserum interacts with structures present on the surfaces of cytotoxic lymphocytes that are involved in the activation of the lytic mechanism(s) or with the actual lytic molecule or molecules themselves. Furthermore, the ability of RH1 to inhibit ADCC, CMC, and NK during the post-binding cytolytic phase of these reactions indicates that binding and cytolysis are distinct and separate events in all types of cell-mediated cytolysis.This publication has 0 references indexed in Scilit: