Isotropic-Nematic Transition in Liquid-Crystalline Elastomers

Abstract
In liquid-crystalline elastomers, the nematic order parameter and the induced strain vary smoothly across the isotropic-nematic transition, without the expected first-order discontinuity. To investigate this smooth variation, we measure the strain as a function of temperature over a range of applied stress, for elastomers cross-linked in the nematic and isotropic phases, and analyze the results using a variation on Landau theory. This analysis shows that the smooth variation arises from quenched disorder in the elastomer, combined with the effects of applied stress and internal stress.

This publication has 11 references indexed in Scilit: