Abstract
An analytical investigation of the performance of flow distribution systems was conducted for both intake and exhaust manifolds. Primary emphasis was placed on configurations in which the lateral tubes formed sharp-edged junctions at right angles to the manifold axis. A mathematical model describing the flow behavior at a discreet branch point was formulated in terms of a momentum balance along the manifold. The model was extended to the case of continuous discharge or intake for a uniformly porous manifold. Numerical solutions of the governing flow distribution equation were obtained and compared with experimental data. Dimensionless parameters characterizing the performance of manifolds were formulated from the analytical model.

This publication has 0 references indexed in Scilit: