Electron transfer between ferrocene and hexacyanoferrate(III) across the water/1,2-dichloroethane interface

Abstract
Kinetics of electron transfer between ferrocene or its derivative (1,1'-diethyl- or 1,1'-distearoylferrocene) in dichloroethane and hexacyanoferrate(III) in water was studied by means of convolution potential sweep voltammetry. Within the accessible range of experimental conditions no effect of either the potential or concentrations of reactants on the rate constant of electron transfer from the organic to the aqueous phase (ko→w = 1 . 10-7 m4 mol-1 s-1) was observed. Electron transfer was shown to occur far from the potential range, in which the ferricenium ion transfer can take place. However, the reaction was complicated by the chemical decomposition of ferricenium in dichloroethane (k = 0·346 s-1).

This publication has 0 references indexed in Scilit: