Monte Carlo calculations for assessment of radiation dose to patients with congenital heart defects and to staff during cardiac catheterizations

Abstract
Effective dose is an important quantity in relation to assessment of radiation risk. Organ and effective doses to paediatric patients undergoing diagnostic and therapeutic heart catheterization procedures can be assessed by combining relatively simple measurements, e.g. of dose–area product (DAP), and calculated dose conversion factors (DCF). This also holds for the radiation dose to the hospital staff, e.g. the cardiologist. Monte Carlo (MC) simulation of radiation transport in mathematical anthropomorphic phantoms is used to obtain the DCFs, which strongly depend on beam quality and geometrical parameters. The performance of a dedicated fast MC code (PCXMC) for patient dosimetry is compared with that of a more elaborate general purpose MC code (MCNP). Resulting organ doses sometimes may differ considerably, partly due to phantom differences. While MCNP uses separate male and female mathematical phantoms, PCXMC uses a hermaphrodite. However, both codes yield effective doses that agree rather well, so PCX...