Abstract
It was shown earlier [Agha and Liu, 1998, 1999, 2000] that different cutting conditions, within superfinish hard turning, would lead to significantly different rolling contact fatigue lives. In this study, residual stresses were measured. The rolling contact fatigue life was then modeled using a maximum modified equivalent stress that takes residual stresses into account. It is seen that the maximum modified equivalent stress is a better predictor than the maximum Hertzian stress, but, still not accurate, given the consistent repeatability of the tested workpieces [Agha and Liu, 2000]. The difference in the nature of residual stresses produced by grinding and hard turning is used to show why the inclusion of the maximum modified equivalent stress, its location and the volume at risk, improves the power of the model to predict the rolling contact fatigue lives of the hard turned surfaces. This model is the best up to date for predicting the fatigue life of a surface, especially when residual stress is a factor.

This publication has 0 references indexed in Scilit: