Chemistry of Ruthenium(II) Monohydride and Dihydride Complexes Containing Pyridyl Donor Ligands Including Catalytic Ketone H2-Hydrogenation1
- 8 March 2005
- journal article
- research article
- Published by American Chemical Society (ACS) in Inorganic Chemistry
- Vol. 44 (7) , 2483-2492
- https://doi.org/10.1021/ic0489387
Abstract
In this study we determine the changes to the properties of dihydride catalysts for ketone H2-hydrogenation by successively replacing the amine donors in the known dach complex RuH2(PPh3)2(dach) (2a), dach = 1,2-(R,R)-diaminocyclohexane, with one pyridyl group in the corresponding 2-(aminomethyl)pyridine (ampy) complexes RuH2(PPh3)2(ampy) (2b) and with two pyridyl groups in the complexes RuH2(PPh3)2(bipy) (2c) and RuH2(PPh3)2(phen) (2d). The ruthenium monohydride complex, (OC-6-54)-RuHCl(PPh3)2(ampy), (1b with Cl trans to H) was prepared by the addition of 1 equiv of ampy to RuHCl(PPh3)3 in THF. Treatment of the monohydride complex with K[BH(sec-Bu)3] in THF or KOtBu/H2 in toluene resulted in the formation of a mixture of at least two isomers of the highly reactive, air-sensitive ruthenium dihydride complex 2b. One is the cis dihydride (OC-6-14)-2b or more simply c,t-2b with trans PPh3 groups and another is the cis dihydride c,c-2b (OC-6-42) that has PPh3 trans to H and PPh3 trans to N(pyridyl). The isomer c,c-2b slowly converts to c,t-2b in solution. The reaction of 1b with KOtBu under Ar results in the formation of a mixture that includes a complex with an imino ligand HNCH-2-py while the same reaction under H2 leads to c,c-2b and then c,t-2b. The dach complex c,t-2a, reacts with ampy, 2,2‘-bipyridine (bipy), and 1,10-phenanthroline (phen) in refluxing THF to form the substituted cis-dihydride complexes c,t-2b, (OC-6-13)-RuH2(PPh3)2(bipy) (c,t-2c with trans PPh3 groups) and (OC-6-13)-RuH2(PPh3)2(phen), c,t-2d, respectively. The dihydrides containing amino groups and cis-PPh3 groups, i.e., c,c-2a or c,c-2b, are active precatalysts for the H2-hydrogenation of acetophenone (neat or in benzene) under mild reaction conditions, whereas those with trans-PPh3 groups, c,t-2a and c,t-2b are much less active. The combination of ampy complex 1b and KOtBu also provides a catalyst in benzene that is more active than the corresponding dach system. The complexes without amino groups c,t-2c and c,t-2d are air-stable and inactive as hydrogenation catalysts under comparable conditions. The mechanism of hydrogenation of ketones catalyzed by isomers of 2a,b is thought to be similar and to proceed via a trans-dihydride complex, t,c-2a or t,c-2b, and an amido complex, neither of which are directly observed for the ampy complexes. The dihydride complex c,t-2b reacts with formic acid to give (OC-6-45)-RuH(OCHO)(PPh3)2(ampy), 3b, with formate trans to hydride. The structures of 1b, c,t-2b, c,t-2c, and 3b have been determined by single-crystal X-ray diffraction.Keywords
This publication has 15 references indexed in Scilit:
- A Succession of Isomers of Ruthenium Dihydride Complexes. Which One Is the Ketone Hydrogenation Catalyst?Journal of the American Chemical Society, 2005
- Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexesCoordination Chemistry Reviews, 2004
- Mechanism of the Hydrogenation of Ketones Catalyzed by trans-Dihydrido(diamine)ruthenium(II) ComplexesJournal of the American Chemical Society, 2002
- Large Effects of Ion Pairing and Protonic−Hydridic Bonding on the Stereochemistry and Basicity of Crown-, Azacrown-, and Cryptand-222-potassium Salts of Anionic Tetrahydride Complexes of Iridium(III)Inorganic Chemistry, 2002
- Metal−Ligand Bifunctional Catalysis: A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl CompoundsThe Journal of Organic Chemistry, 2001
- Catalytic Cycle for the Asymmetric Hydrogenation of Prochiral Ketones to Chiral Alcohols: Direct Hydride and Proton Transfer from Chiral Catalysts trans-Ru(H)2(diphosphine)(diamine) to Ketones and Direct Addition of Dihydrogen to the Resulting Hydridoamido ComplexesJournal of the American Chemical Society, 2001
- Asymmetric hydrogenation via architectural and functional molecular engineeringPublished by Walter de Gruyter GmbH ,2001
- Organizing Chain Structures by Use of Proton−Hydride Bonding. The Single-Crystal X-ray Diffraction Structures of [K(Q)][Os(H)5(PiPr3)2] and [K(Q)][Ir(H)4(PiPr3)2], Q = 18-Crown-6 and 1,10-Diaza-18-crown-6Journal of the American Chemical Society, 1998
- Switching On and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of [Ir{H(.eta.1-SC5H4NH)}2(PCy3)2]BF4.cntdot.2.7CH2Cl2Journal of the American Chemical Society, 1994
- Topics in StereochemistryTopics in Stereochemistry, 1981