Thiols as Mechanistic Probes for Catalysis by the Free Radical Enzyme Galactose Oxidase
- 1 January 1996
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 35 (45) , 14425-14435
- https://doi.org/10.1021/bi961369x
Abstract
Galactose oxidase, a mononuclear copper enzyme, oxidizes primary alcohols to aldehydes using molecular oxygen. A unique type of cross-link between tyrosine 272, an active-site copper ligand, and cysteine 228 provides a modified tyrosine radical site believed to act as a one-electron redox center. Substrate analogs incorporating a primary thiol group in place of the primary alcohol group in normal substrates (RCH2OH) have been studied as active-site mechanistic probes. Thiol sulfur coordinates to the active-site copper, leading to enzyme inactivation in a time- and concentration-dependent manner. The mechanism of inactivation involves redox chemistry related to the active-site redox centers, though inactivation does not proceed through the rate-determining hydrogen atom abstraction step that occurs in alcohol oxidation. Thiols are therefore classified as active-site-directed redox inactivators. The thiol analog of galactose, 6-Thio-Me-Gal, is also turned over by the enzyme, albeit at a much reduced rate, indicating that the energetics of turnover is changed significantly. Thiols constitute a particularly good model of the ground state enzyme−substrate complex. The Michaelis complex for thiol substrate analogs is stabilized at least 200-fold compared to the analogous alcohol substrates, whereas the transition state of H atom abstraction is destabilized, presumably due to a slight increase in distances of reacting atoms and weakening of hydrogen-bonding interactions due to the larger atomic radius of sulfur compared to that of oxygen.Keywords
This publication has 14 references indexed in Scilit:
- Molecular Modeling Studies on Oxidation of Hexopyranoses by Galactose Oxidase. An Active Site Topology Apparently Designed To Catalyze Radical Reactions, Either Concerted or StepwiseJournal of the American Chemical Society, 1996
- Some recent synthetic routes to thioketones and thioaldehydesChemical Society Reviews, 1993
- Mechanism-based inactivation of galactose oxidase: evidence for a radical mechanismJournal of the American Chemical Society, 1993
- Erratum: Orbits of shepherd satellites deduced from the structure of the rings of UranusNature, 1991
- PROTEIN RADICAL INVOLVEMENT IN BIOLOGICAL CATALYSIS?Annual Review of Biochemistry, 1989
- Reduction potentials and exchange reactions of thiyl radicals and disulfide anion radicalsThe Journal of Physical Chemistry, 1987
- Redox potentials of some sulfur-containing radicalsThe Journal of Physical Chemistry, 1986
- Rapid chromatographic technique for preparative separations with moderate resolutionThe Journal of Organic Chemistry, 1978
- Trivalent copper, superoxide, and galactose oxidaseJournal of the American Chemical Society, 1978
- Stereochemistry of Dehydrogenation by D-Galactose OxidaseCanadian Journal of Chemistry, 1971