Optical Control of Ultracold Collisions in Metastable Xenon

Abstract
Near-resonant light is used to modify the collision dynamics of magneto-optically trapped metastable xenon atoms. Enhanced collisional ionization occurs for a "control laser" tuned below resonance, greatly exceeding the predictions of existing models of trap loss very close to resonance. With the trapping laser off, control light tuned above resonance suppresses ionization by a factor of 8. With the trap light on, a suppression factor >30 is observed. Increases in the number and density of trapped atoms and in the trap lifetime attest to the utility of optical control of collisions.