Two-dimensional spatial-phase-locked electron-beam lithography via sparse sampling

Abstract
We report a new mode of spatial-phase-locked electron-beam lithography based on alignment of each e-beam deflection field to a fiducial grid on the substrate. Before exposing the pattern in a given field, the fiducial grid is sparsely sampled with the electron beam at a subexposure dose. These samples form a two-dimensional moiré pattern that is analyzed to calculate field shift, scale, rotation, nonorthogonality, and trapezoidal distortion. Experimental verification of the approach was carried out with a scintillating fiducial grid quenched by interference lithography. Despite a poor signal-to-noise ratio, we achieved sub-beamstep field-stitching and pattern-placement accuracy.

This publication has 6 references indexed in Scilit: