QUANTIFYING GENE FLOW FROM SPATIAL GENETIC STRUCTURE DATA IN A METAPOPULATION OF CHAMAECRISTA FASCICULATA (LEGUMINOSAE)
Open Access
- 1 May 2003
- Vol. 57 (5) , 995-1007
- https://doi.org/10.1111/j.0014-3820.2003.tb00311.x
Abstract
An extensive allozyme survey was conducted within a natural "meta" population of the native North American annual legume, Chamaecrista fasciculata (Leguminosae) to quantify genetic structure at different spatial scales. Gene flow was then estimated by a recently developed indirect method based on a continuous population model, using pairwise kinship coefficients between individuals. The indirect estimates of gene flow, quantified in terms of neighborhood size, with an average value on the order of 150 individuals, were concordant among different spatial scales (subpopulation, population, metapopulation). This gene-flow value lies within the range of direct estimates previously documented from observations of pollen and seed dispersal for the same metapopulation. Monte Carlo simulations using the direct measures of gene flow as parameters further demonstrated that the observed spatial pattern of allozyme variation was congruent with a model of isolation by distance. Combining previously published estimates of pollen dispersal distances with kinship coefficients from this study, we quantified biparental inbreeding relative to either a single subpopulation or the whole metapopulation. At the level of a neighborhood, little biparental inbreeding was observed and most departure from Hardy-Weinberg genotypic proportions was explained by self-fertilization, whereas both selfing and biparental inbreeding contributed to nonrandom mating at the metapopulation level. Gene flow was also estimated from indirect methods based on a discontinuous population structure model. We discuss these results with respect to the effect of a patchy population structure on estimation of gene flow.Keywords
This publication has 59 references indexed in Scilit:
- Inbreeding and Outbreeding Depression in Natural Populations ofChamaecrista fasciculata(Fabaceae)Conservation Biology, 2000
- Gene Dispersal and Spatial Genetic StructureEvolution, 1997
- Gene Flow in Chamaecrista fasciculata (Leguminosae) I. Gene DispersalEvolution, 1991
- Genetic differentiation, diversity, and inbreeding in the mountain monkeyflower (Mimulus caespitosus) of the Washington CascadesCanadian Journal of Botany, 1989
- Analyzing Tables of Statistical TestsEvolution, 1989
- Genetic Consequences of Outcrossing in the Cleistogamous Annual, Impatiens capensis. I. Population-Genetic StructureEvolution, 1987
- Interpopulation Gene Flow by Pollen in Wild Radish, Raphanus sativusThe American Naturalist, 1985
- Estimating F-Statistics for the Analysis of Population StructureEvolution, 1984
- THE GENETICAL STRUCTURE OF POPULATIONSAnnals of Eugenics, 1949