Net CO2 exchange rates in three different successional stages of the "Dark Taiga" of central Siberia
Open Access
- 1 November 2002
- journal article
- Published by Stockholm University Press in Tellus B: Chemical and Physical Meteorology
- Vol. 54 (5) , 642-654
- https://doi.org/10.1034/j.1600-0889.2002.01351.x
Abstract
The net ecosystem exchange (NEE) of successional stages of the Abies-dominated dark taiga was measured in central Siberia (61°N 90°E) during the growing season of the year 2000 using the eddy covariance technique. Measurements started before snow melt and canopy activity in spring on day of year (DOY) 99 and lasted until a permanent snow cover had developed and respiration had ceased in autumn DOY 299. Three stands growing in close vicinity were investigated: 50 yr-old Betula pubescens (“Betula stand”, an early successional stage after fire), 250 yr-old mixed boreal forest, representing the transition from Betula-dominated to Abies-dominated canopies, and 200-yr-old Abies sibirica (“Abies stand”, representing a late successional stage following the mixed boreal forest). The mixed boreal forest had a multi-layered canopy with dense understory and trees of variable height and age below the main canopy, which was dominated by Abies sibirica, Picea obovata and few old Betula pubescens and Populus tremula trees. The Abies stand had a uniform canopy dominated by Abies sibirica. This stand appears to have established not after fire but after wind break or insect damage in a later successional stage. The stands differed with respect to the number of days with net CO2 uptake (Betula stand 89 days, mixed boreal forest 109 days, and Abies stand 135 days), maximum measured LAI (Betula 2.6 m2 m−2, mixed boreal forest 3.5 m2 m−2 and Abies stand 4.1 m2 m−2) and basal area (Betula stand 30.2 m2 ha−1, mixed boreal forest 35.7 m2 ha−1, and Abies stand 46.5 m2 ha−1). In the mixed boreal forest, many days with net daytime CO2 release were observed in summer. Both other sites were almost permanent sinks in summer. Mean daytime CO2 exchange rates in July were −8.45 μmol m−2 s−1 in the Betula stand, −4.65 μmol m−2 s−1 in the mixed boreal forest and −6.31 μmol m−2 s−1 in the Abies stand. Measured uptake for the growing season was −247.2 g C m−2 in the Betula stand, −99.7 g C m−2 in the mixed boreal forest and −269.9 g C m−2 in the Abies stand. The total annual carbon uptake might be slightly lower (i.e. less negative) due to some soil respiration under snow in winter. The study for the first time demonstrates that old forests in the “Dark Taiga” are carbon sinks and that sink activity is very similar in late and early successional stages. Canopy and crown structure with associated self-shading and available radiation are suggested as possible causes for the observed differences. DOI: 10.1034/j.1600-0889.2002.01351.xKeywords
This publication has 22 references indexed in Scilit:
- Estimates of regional surface carbon dioxide exchange and carbon and oxygen isotope discrimination during photosynthesis from concentration profiles in the atmospheric boundary layerTellus B: Chemical and Physical Meteorology, 2002
- Annual ecosystem respiration budget for a Pinus sylvestris stand in central SiberiaTellus B: Chemical and Physical Meteorology, 2002
- Factors Controlling Long- and Short-Term Sequestration of Atmospheric CO 2 in a Mid-latitude ForestScience, 2001
- Productivity overshadows temperature in determining soil and ecosystem respiration across European forestsGlobal Change Biology, 2001
- On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forestAgricultural and Forest Meteorology, 2000
- Respiration as the main determinant of carbon balance in European forestsNature, 2000
- Roots exert a strong influence on the temperature sensitivityof soil respirationNature, 1998
- Long‐term measurements of boreal forest carbon balance reveal large temperature sensitivityGlobal Change Biology, 1998
- Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forestAgricultural and Forest Meteorology, 1997
- A cospectral correction model for measurement of turbulent NO2 fluxBoundary-Layer Meteorology, 1995