Quantum phase transitions in the Fermi–Bose Hubbard model

Abstract
We propose a multiband Fermi-Bose Hubbard model with on-site fermion-boson conversion and general filling factor in three dimensions. Such a Hamiltonian models an atomic Fermi gas trapped in a lattice potential and subject to a Feshbach resonance. We solve this model in the two-state approximation for paired fermions at zero temperature. The problem then maps onto a coupled Heisenberg spin model. In the limit of large positive and negative detuning, the quantum phase transitions in the Bose Hubbard and paired-Fermi Hubbard models are correctly reproduced. Near resonance, the Mott states are given by a superposition of the paired-fermion and boson fields and the Mott-superfluid borders go through an avoided crossing in the phase diagram.
All Related Versions