GRB990123: Evidence that the Gamma Rays Come from a Central Engine

Abstract
GRB990123 was a long complex gamma-ray burst with an optical transient that started early within the gamma-ray phase. The peak and power law decay of the early optical emission strongly indicates the presence of a decelerating relativistic shell during that phase. Prior to this burst, it was not known if the shell decelerated during the burst, so an external shock origin for the gamma rays was still possible. If the gamma-rays are produced in the external shock, then the pulse widths should reflect the observed deceleration of the shell and increase by about 2.3. We analyze the fine time structure observed in the gamma-ray data from BATSE and determine that the width of the peaks do not increase as expected for a decelerating shell; the later pulses are, at most, a factor of 1.15 longer than the earlier pulses. We also analyze the variability to determine what fraction of the shell's surface could be involved in the production of the gamma rays, the so-called surface filling factor. For GRB990123 we find a filling factor of 0.008. The lack of pulse width evolution eliminates the only remaining kinematically acceptable external shock explanation for the gamma-ray phase and, thus, the gamma rays must originate at a central engine.