Abstract
The final, irreversible step in the duplication and distribution of genomes to daughter cells takes place when chromosomes split at the metaphase-to-anaphase transition. A protease of the CD clan, separase (C50 family), is the key regulator of this transition. During metaphase, cohesion between sister chromatids is maintained by a chromosomal protein complex, cohesin. Anaphase is triggered when separase cleaves the Scc1 subunit of cohesin at two specific recognition sequences. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms impose regulation on separase activity, as well as on the susceptibility of the cleavage target Scc1 to cleavage by separase. This chapter provides an overview of these multiple levels of regulation.

This publication has 0 references indexed in Scilit: