Early primary succession on the volcano Mount St. Helens
- 1 April 1993
- journal article
- Published by Wiley in Journal of Vegetation Science
- Vol. 4 (2) , 223-234
- https://doi.org/10.2307/3236108
Abstract
Primary succession on Mount St. Helens, Washington State, USA, was studied using long‐term observational and experimental methods. Distance from potential colonists is a major factor that impedes early primary succession. Sites near undisturbed vegetation remain low in plant cover, but species richness is comparable to intact vegetation. Sites over 500 m from sources of potential colonists have as many species, but mean species richness is much lower than in undisturbed plots. Cover is barely measurable after 11 growing seasons. Highly vagrant species of Asteraceae and Epilobium dominate isolated sites. Sites contiguous to undisturbed communities are dominated by large‐seeded species.For a new surface to offer suitable conditions to invading plants, weathering, erosion and nutrient inputs must first occur. The earliest colonists are usually confined to specific microsites that offer some physical protection and enhanced resources. Primary succession on Mount St. Helens has been very slow because most habitats are isolated and physically stressful. Well‐dispersed species lack the ability to establish until physical processes ameliorate the site. Species capable of establishment lack suitable dispersal abilities. Subsequently, facilitation may occur, for example through symbiotic nitrogen fixation, but these effects are thus far of only local importance. Lupinus lepidus usually facilitates colonization of other species only after it dies, leaving behind enriched soil lacking any competitors. Experiments and fine‐scale observations suggest that successional sequences on Mount St. Helens are not mechanistically necessary. Rather, they result from local circumstances, landscape effects and chance.Keywords
This publication has 61 references indexed in Scilit:
- Mineralogy and weathering processes in Recent and Holocene tephra deposits of the Pacific Northwest, USAGeoderma, 1991
- Species turnover and diversity during early stages of vegetation recovery on the volcano Usu, northern JapanJournal of Vegetation Science, 1991
- Interaction between the cactus Neobuxbaumia tetetzo and the nurse shrub Mimosa luisanaJournal of Vegetation Science, 1991
- Seedling Growth, Physiology, and Survivorship in a Subalpine, Volcanic EnvironmentEcology, 1989
- Colonizing Plants on the Pumice Plains, Mount St. Helens, WashingtonAmerican Journal of Botany, 1988
- Life in the allobiosphereTrends in Ecology & Evolution, 1988
- Plant Colonization of a Volcanic Island, Surtsey, IcelandArctic and Alpine Research, 1987
- Re-establishment of mycorrhizas on Mount St Helens: Migration vectorsTransactions of the British Mycological Society, 1987
- Competitive effects on the structure of subalpine meadow communitiesCanadian Journal of Botany, 1985
- CONSPICUOUS ALGAL COLONIZATION OF THE ASH FROM MOUNT ST. HELENS1Journal of Phycology, 1982