Abstract
Atmospheres of transiting extrasolar giant planets (EGPs) such as HD 209458 b must impose features on the spectra of their parent stars during transits; these features contain information about the physical conditions and chemical composition of the atmospheres. The most convenient observational index showing these features is the ``spectrum ratio'', defined as the wavelength-dependent ratio of spectra taken in and out of transit. I describe a model that estimates this ratio and its dependence upon parameters of the planetary atmosphere, including its cloud structure, temperature, chemical composition, and wind fields. For giant planets in close orbits, the depths of atomic and molecular features in the spectrum ratio may be as large as 0.001. Observations in visible and near-IR wavelengths using existing and planned spectrographs should be adequate to detect these features, and to provide some diagnostics of the conditions within the planetary atmosphere. I give numerous examples of such diagnostics, and I discuss their practicality.

This publication has 0 references indexed in Scilit: