Analysis of Some Mixed Finite Element Methods Related to Reduced Integration
- 1 April 1982
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 38 (158) , 375-400
- https://doi.org/10.2307/2007276
Abstract
We prove error estimates for the following two mixed finite element methods related to reduced integration: A method for Stokes’ problem using rectangular elements with piecewise bilinear approximations for the velocities and piecewise constants for the pressure, and one method for a plate problem using bilinear approximations for transversal displacement and rotations and piecewise constants for the shear stress. The main idea of the proof in the case of Stokes’ problem is to combine a weak Babuška-Brezzi type stability estimate for the pressure with a superapproximability property for the velocities. A similar technique is used in the case of the plate problem.Keywords
This publication has 9 references indexed in Scilit:
- Finite Element Approximation of the Navier-Stokes EquationsPublished by Springer Nature ,1979
- The Finite Element Method for Elliptic ProblemsJournal of Applied Mechanics, 1978
- Reduced integration for improved accuracy of finite element approximationsComputer Methods in Applied Mechanics and Engineering, 1978
- Perturbation of mixed variational problems. Application to mixed finite element methodsRAIRO. Analyse numérique, 1978
- A combined finite element and Marker and cell method for solving Navier-Stokes equationsNumerische Mathematik, 1976
- On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliersRevue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 1974
- Conforming and nonconforming finite element methods for solving the stationary Stokes equations IRevue française d'automatique informatique recherche opérationnelle. Mathématique, 1973
- Error-bounds for finite element methodNumerische Mathematik, 1971
- Une méthode d'approximation de la solution des équations de Navier-StokesBulletin de la Société Mathématiques de France, 1968