Advanced Load Frequency Control

Abstract
The problem of designing a load frequency control law which reduces transient frequency oscillations (swings) and reduces the number of control signals sent to power houses is investigated. A linear model of an area of an interconnected power system is developed, and a discrete time, linear-plus-deadband, feedback control law is designed. Feedback variables include cumulative inadvertent interchange, frequency deviation, integral of frequency deviation, real power absorbed by loads, and governor-turbine variables. This linear-plus-deadband control is an application of a special case of a more general "set-theoretic" class of control laws. A simulation of two areas with two hydro sources is presented. The dynamic response to a step load change is determined for the case of no load frequency control, load frequency control presently used by power companies, and load frequency control designed in this paper.

This publication has 8 references indexed in Scilit: