Expression and comparative characterization of Gq‐coupled invertebrate visual pigments and melanopsin
- 13 December 2007
- journal article
- research article
- Published by Wiley in Journal of Neurochemistry
- Vol. 105 (3) , 883-890
- https://doi.org/10.1111/j.1471-4159.2007.05184.x
Abstract
A non-visual pigment melanopsin, which is localized in photosensitive retinal ganglion cells and is involved in the circadian photoentrainment and pupillary responses in mammals, is phylogenetically close to the visual pigments of invertebrates, such as insects and cephalopods. Recent studies suggested that melanopsin is a bistable pigment and drives a Gq-mediated signal transduction cascade, like the invertebrate visual pigments. Because detailed electrophysiological properties are somewhat different between the visual cells and the photosensitive ganglion cells, we here expressed and purified the invertebrate visual pigment and melanopsin to comparatively investigate their Gq-activation abilities. We successfully expressed and purified UV and blue light-sensitive visual pigments of the honeybee as well as the amphioxus melanopsin. Although the purified UV-sensitive pigment and the melanopsin lost their bistable nature during purification, reconstitution of the pigments in lipid vesicles resulted in return of the bistable nature. The light-dependent Gq-activation abilities among these reconstituted pigments are similar, suggesting that the electrophysiological differences do not depend on the Gq-activation step but rather on the other signal transduction steps and/or on cell properties. Our findings are also important in that this is the first report describes a heterologous large-scale expression of the Gq-coupled invertebrate visual pigments in cultured cells.Keywords
This publication has 43 references indexed in Scilit:
- High-Resolution Crystal Structure of an Engineered Human β 2 -Adrenergic G Protein–Coupled ReceptorScience, 2007
- GPCR Engineering Yields High-Resolution Structural Insights into β 2 -Adrenergic Receptor FunctionScience, 2007
- Two isoforms of chicken melanopsins show blue light sensitivityFEBS Letters, 2007
- Crystallization and crystal properties of squid rhodopsinActa Crystallographica Section F Structural Biology and Crystallization Communications, 2007
- Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian VertebratesPLoS Biology, 2006
- The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2 Å Crystal StructureJournal of Molecular Biology, 2004
- Counterion displacement in the molecular evolution of the rhodopsin familyNature Structural & Molecular Biology, 2004
- Heterologous Expression of Limulus RhodopsinJournal of Biological Chemistry, 2003
- THEEVOLUTION OFCOLORVISION ININSECTSAnnual Review of Entomology, 2001
- Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methodsJournal of Comparative Physiology A, 1986