Morphine in Postoperative Patients: Pharmacokinetics and Pharmacodynamics of Metabolites

Abstract
There is great variability in the need for morphine in the postoperative period. We performed a pharmacokinetic-pharmacodynamic study considering the potential effect of the two main metabolites of morphine. Fifty patients with moderate to severe pain received morphine as an IV titration, followed by IM administration postoperatively. The plasma concentration of morphine, morphine-6-glucuronide (M-6-G), morphine-3-glucuronide (M-3-G), and pain intensity were measured at frequent intervals. Pharmacokinetic and pharmacodynamic fitting was performed with the software NONMEM. The pharmacokinetics were largely predictable. M-6-G and M-3-G clearances were markedly decreased in patients with renal failure. The pharmacodynamics was less predictable, with an important interindividual variability. M-6-G was 7.8 times more potent than morphine, but the average time to peak concentration in the effect compartment after a bolus injection of morphine was 4.25 h for M-6-G, when compared to 0.33 h for morphine. M-3-G showed mild inhibition of the analgesic properties of morphine and of M-6-G. The time to M-3-G peak concentration in the effect compartment after a bolus injection of morphine was 10 h. M-6-G is a potent opioid agonist and M-3-G a mild opioid antagonist. Both are poorly excreted in patients with renal failure. However, the metabolism of morphine was rapid when compared to the transfer of metabolites through the blood-brain barrier, which appears to be the limiting process. Because poor analgesia due to M-3-G's effect may occur in some patients after 1 or 2 days, a switch to other molecules should be considered.