Long Range Order at Low Temperature in Dipolar Spin Ice
Preprint
- 26 February 2001
Abstract
Recently it has been suggested that long range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets ${\rm Dy_{2}Ti_{2}O_{7}}$ and ${\rm Ho_{2}Ti_{2}O_{7}}$. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to ${\rm Dy_{2}Ti_{2}O_{7}}$ and ${\rm Ho_{2}Ti_{2}O_{7}}$.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: