A duality theorem for nondifferentiable convex programming with operatorial constraints

Abstract
A duality theorem of Wolfe for non-linear differentiable programming is now extended to minimization of a non-differentiable, convex, objective function defined on a general locally convex topological linear space with a non-differentiable operatorial constraint, which is regularly subdifferentiable. The gradients are replaced by subgradients. This extended duality theorem is then applied to a programming problem where the objective function is the sum of a positively homogeneous, lower semi continuous, convex function and a subdifferentiable, convex function. We obtain another duality theorem which generalizes a result of Schechter.

This publication has 6 references indexed in Scilit: