Dehydration of Isopropanol by Pervaporation Using Aromatic Polyetherimide Membranes

Abstract
Aromatic polyetherimide membranes were prepared by the phase inversion method and tested for the pervaporation separation of water from isopropanol with emphasis on the breaking of azeotropic composition and the dehydration of high concentrations of isopropanol. It was found that the membrane selectivity was enhanced by partial evaporation of the solvent in the cast polymer films prior to the gelation step during membrane formation. The membrane performance was shown to be dependent on the feed concentration and the operating temperature. At a feed temperature of 25°C and a permeate pressure of 133 Pa, separation factors of 173 and 384 were achieved for the dehydration of isopropanol solutions at 0.68 (azeotropic composition) and 0.96 mole fractions isopropanol, respectively, with reasonably high permeation rates. The utility of the membranes for the proposed separation was demonstrated; however, these membranes were not prepared under optimized conditions and thus a continuous study is required to rationalize the effects of membrane preparation parameters on membrane performance.